stap_termination.Rd
Spatial-Temporal Exposure Termination-Maximization Estimates
stap_termination(object, prob = 0.9, exposure_limit = 0.05, pars = NULL, max_value = NULL, ...) # S3 method for stapreg stap_termination(object, prob = 0.9, exposure_limit = 0.05, pars = NULL, max_value = NULL, ...)
object | A fitted model object returned by one of the
rstap modeling functions. See |
---|---|
prob | A number \(p \in (0,1)\) indicating the desired
probability mass to include in the intervals. The default is to report
\(90\)% intervals ( |
exposure_limit | A number indicating the desired amount of exposure for which the function will return an estimate of distance/time. Note that the exposure_limit corresponds to spatial exposure and 1-temporal exposure. |
pars | An optional character vector of parameter names. |
max_value | by defuault the max_distance and/or time from the model's original input will be used to calculate the upper bound of possible terminating distances/times - the max_value can be used to specify a new value for this value. |
... | Currently ignored. |
A matrix with three columns and as many rows as model parameters (or
the subset of parameters specified by pars
and/or
regex_pars
). For a given value of prob
, \(p\), the columns
correspond to the lower and upper \(100p\)% interval limits and have the
names \(100\alpha/2\)% and \(100(1 - \alpha/2)\)%, where \(\alpha
= 1-p\). For example, if prob=0.9
is specified (a \(90\)%
interval), then the column names will be "5%"
and "95%"
,
respectively.
if (FALSE) { fit_glm <- stap_glm(formula = y ~ sex + sap(Fast_Food), subject_data = homog_subject_data, distance_data = homog_distance_data, family = gaussian(link = 'identity'), subject_ID = 'subj_id', prior = normal(location = 0, scale = 5, autoscale = F), prior_intercept = normal(location = 25, scale = 5, autoscale = F), prior_stap = normal(location = 0, scale = 3, autoscale = F), prior_theta = log_normal(location = 1, scale = 1), prior_aux = cauchy(location = 0,scale = 5), max_distance = max(homog_distance_data$Distance), chains = CHAINS, iter = ITER, refresh = -1,verbose = F) terminal_points <- stap_termination(fit_glm, prob = .9, exposure_limit = 0.01) } if (FALSE) { fit_glm <- stap_glm(formula = y ~ sex + sap(Fast_Food), subject_data = homog_subject_data, distance_data = homog_distance_data, family = gaussian(link = 'identity'), subject_ID = 'subj_id', prior = normal(location = 0, scale = 5, autoscale = F), prior_intercept = normal(location = 25, scale = 5, autoscale = F), prior_stap = normal(location = 0, scale = 3, autoscale = F), prior_theta = log_normal(location = 1, scale = 1), prior_aux = cauchy(location = 0,scale = 5), max_distance = max(homog_distance_data$Distance), chains = CHAINS, iter = ITER, refresh = -1,verbose = F) terminal_vals <- stap_termination(fit_glm, prob = .9, exposure_limit = 0.01) }